Dna Damage as a Molecular Link in the Pathogensis of Copd in Smokers
نویسندگان
چکیده
منابع مشابه
Homocystein Level and Total Antioxidant Capacity in Chronic Obstructive Pulmonary Disease
Abstract Background and Objective: Oxidant-antioxidant imbalance plays a key role in pathogenesis of chronic obstructive pulmonary disease (COPD). This study aimed to evaluate homocystiene and total antioxidant capacity in COPD patients, compared to smoker and non-smoker healthy people. Material and Methods: We measured total antioxidant capacity with Cayman Kit, uric acid with Pars Azm...
متن کاملUnbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer.
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterised by oxidative stress and increased risk of lung carcinoma. Oxidative stress causes DNA damage which can be repaired by DNA-dependent protein kinase complex. OBJECTIVES To investigate DNA damage/repair balance and DNA-dependent protein kinase complex in COPD lung and in an animal model of smoking-induced lung damage and to...
متن کاملمطالعه فاکتورهای التهابی در بیماران مبتلا به انسداد مزمن ریوی
Background & Aims : Chronic obstructive pulmonary disease (COPD) is characterized by irreversible airflow obstruction. Many of the systemic manifestations of chronic obstructive pulmonary disease are mediated through increased systemic levels of inflammatory proteins. Oxidative stress and inflammation are the major hallmarks of COPD and inflammatory factors can be used as a biomarker to asses...
متن کاملOGG1 DNA Repair Gene Polymorphism As a Biomarker of Oxidative and Genotoxic DNA Damage
Background: Single nucleotide polymorphisms in 8-oxoguanine DNA glycosylase-1 (OGG1) gene modulates DNA repair capacity and functions as one of the first lines of protective mechanisms against 8-hydroxy-2’-deoxyguanosine (8-OHdG) mutagenicity. OGG1-Cys326 gene polymorphism may decrease DNA repair function, causing oxidative stress due to higher oxidative DNA damage. The main purpose of this stu...
متن کاملEpigenetic: A missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study
Sulfur mustard (SM, bis- (2-chloroethyl) sulphide) is a chemical warfare agent that causes DNA alkylation, protein modification and membrane damage. SM can trigger several molecular pathways involved in inflammation and oxidative stress, which cause cell necrosis and apoptosis, and loss of cells integrity and function. Epigenetic regulation of gene expression is a growing research topic and is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011